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A var ia t ional  method is employed to solve s ta t ionary and nonstat ionary heat conduction 
problems when the thermal  conductivity coefficient  is tempera ture-dependent  and the 
heat generat ion function of the medium is a rb i t r a ry .  

T h e  V a r i a t i o n a l  F o r m u l a t i o n  

1. In situations where  t empera tu re  drops a r e  large  and an accura te  t empera tu re  distr ibution is to 
be determined,  the t empera ture -dependence  of the thermophysical  pa ramete r s  must  be taken into account. 
This is the case,  for  example,  in nuclear  r eac to r s  when calculations a rc  made of the maximum possible 
power [1]. Unfortunately, if the coefficient of thermal  conductivity cannot be considered constant, the 
mathematical  problem becomes ve ry  involved and leads to nonlinear equations. 

Fa i r l y  recent ly ,  thanks to the increasing knowledge of thermal  proper t ies  and the importance of 
nonlinear problems in the study of diffusion p rocesses  [2, 3], problems of this kind, even in the domain 
of nuclear  technology, a r e  being solved with the application of numer ica l  and analytical  methods. Through 
the use of a method dueto  Kirchhoffand van Dusen, which involves basical ly the introduction of a new va r i -  
ables,  Pfann [4] solved severa l  one-dimensional  problems of heat conduction and one two-dimensional  
s ta t ionary problem. 

Blot [5, 6] and Lardner  [7] developed severa l  approximate  methods for  heat conduction problems,  
based on var ia t ional  principles.  Later  on, Hays worked out a variat ional  method, which he f i r s t  applied to 
severa l  problems of hydrodynamics [8], and la ter  a lso to heat conduction problems involving a t empera -  
ture-dependent  thermal  conductivity coefficient [9]. 

Heat conduction in a plate without internal  heat generat ion was studied by Dowty and Howarth [10] 
using a f in i te -d i f ference  method. 

In the f i r s t  par t  of the present  paper,  wherein we study three-d imensional  problems,  we use the 
var ia t ional  theory  of Schechter  [11], taking into account t empera tu re  dependence of the thermophysical  
proper t ies  and studying both s ta t ionary and nonstat ionary conditions. We analyze the plate problem in de-  
tail  analytically,  and then numerical ly ,  followed by a short  discussion. 

2. If we consider  the medium to be homogeneous and isotropic  (which is close to actuality,  for  ex-  
ample,  in uranium or uranium oxide reac tors ) ,  the heat conduction differential  equation takes the fo rm 

OT (p, t) (1) 
div [k grad T (p, t)] + q (p, t) = pc 0 - - - ~  ' 

where 
k=- k (T). (2) 

For  the var ia t ional  method functional analysis  is v e ry  important ,  and, in this regard,  the theory 
developed by Mikhlin [12] and Hilber t  [13] is of in teres t .  
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We a s s u m e  that the t e m p e r a t u r e  in a solid of volume V is r ep re sen tab le  as a sum of two t e rms :  a 
t e m p e r a t u r e  dis t r ibut ion T* and a var ia t iona l  dis t r ibut ion 6T: 

T=T*(p, t) + ~T(p, t). (3) 

The t he rm a l  conductivity coefficient  k, the densi ty  p, and the vo lumet r ic  specif ic  heat  capaci ty  c 
may  be t empera tu re -dependen t .  However ,  for  many  m a t e r i a l s  of engineering in te res t  the t e m p e r a t u r e  de-  
pendence of p and c is negligible. At the s ame  t ime,  the t he rma l  conductivity coefficient  k, on the other 
hand, often has  an es sen t i a l  dependence on the t e m p e r a t u r e  

k(T)=k(T* + 6T)=k* + ~k. (4) 

If on the boundar ies  of the solid the t e m p e r a t u r e  dis t r ibut ion is known, the t he rma l  flux is equal to zero ,  
and t e r m s  in 5k m a y  be  neglected,  then the functional I can be wri t ten in the f o r m  

I = ~ ;  I'k--~-2 (vT• OT* ] (5) 

t V 

It is read i ly  seen  that Eq. (1) is the E u l e r - L a g r a n g e  equation. 

After  choosing a base  function we can cons t ruc t  the des i red  solution; however  it will contain n un-  
de te rmined  coeff icients  fli '  The se lec t ion  of such a base  function is ve ry  involved. Start ing with the R a y -  
l e i g h - R i t z  method, we have 

OI 
- - = 0 ,  i = 0 ,  I, 2, 3 . . . . .  n. (6) 
013~ 

F r o m  n of these equations we de t e rmine  the n coefficients  /3 i. 

T w o - D i m e n s i o n a l  P l a t e  

Placing the or igin of the x - ax i s  at  the center  of the plate (the other two dimensions  a r e  assumed  to be 
of a higher order ) ,  we wr i te  the d i f ferent ia l  Eq. (1) in the f o r m  

( O T )  OT (7) 
- -  k -~x + q = o c  0-7- 
0 
Ox 

with the boundary and initial  conditions 

T = 0  

T=T r t=O, 

t > 0 ,  x = ~ L, 

- - L < x <  +L. 
(8) 

The ope ra to r  (5) m a y  be simplif ied:  

\ Ox ) --~-] dtdx. 
t x 

(9) 

We introduce the following d imens ion less  quantit ies:  

~=x/L, ~=aol/L 2, O=T/Tr; (i0) 

q* = qL2/koT~; (11) 

k=ko(1 + crO). (12) 

We a s s u m e  that the t h e r m a l  conductivity coeff icient  is a l inear  function of the t e m p e r a t u r e  and that 
the remain ing  p a r a m e t e r s  a r e  constant.  Equations (7)-(9) then t r a n s f o r m  into the following equations: 

0~ + q* = ~0~ ; 

0=0 "r~O, ~= +1; 

0=1 ~ = 0 ,  - - 1 < ~ , < + 1 ;  

(13) 

(14) 
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. ~  q - i  j 00,] I= . - -~  ~ - 0  a~ - - o  d ,d~ .  (15) 
0 - -1  

In order  to make clear that the choice of base function is one of the most involved problems of the va r ia -  
tional method, we consider two functions, which, although analogous in form,  lead to absolutely different 
resul ts .  At f i r s t  we consider the following basis function: 

tn rn  

(16) 

We see that Eq. (16) sat isf ies  the boundary and initial conditions (14) if 

~'rn 

S,~ 2q* (~3~- 1)m 

(17) 

(18) 

(19) 

We minimize the functional (15) using the basis function (16). We have 

| + l  

a~., (l  + oo*) a_o_0. _ _ .  

0 - - I  

_ _  _q ,  O_~j] d'~d~= O, (20) 

and, correspondingly, we establish the supplementary condition 

0=0". 

Carrying out the integration with 

N = 2 n + l ,  F = 2 7 + l ,  J = 2 ] + l ,  

(21) 

(22) 

where n, T, 
#j 

j = 0, 1, 2, . . . , m, we obtain a ser ies  of nonlinear algebraic expressions in the unknowns 

q, 1 1 1 q*)] 16(~ {[ (1__ q~_h (1__ ~_2n ) �9 1 

4q* ] +  4q* [ 1 ( i  q* ) 4q* ]} (N2@j2--F 2) 
-4:- n2(~'~+~J )2N2 ~ (Dit+~j) 2. -~ -F ~2N2~ iN2 (F+j)2][N2 (F_j)2] =0 .  (23) 

We use the Newton-Raphson method for solving this system. Putting q* = 20, we obtain flj only up to 
= 0.073. For  large a the magnitude of the e r ro r  is of the same order as that of fl0. If we consider Fig. l a ,  
on which 6 values of fi j a re  represented (it should be remembered  that the ordinary scale must  be mult i-  
plied by 10 to obtain the il l-values for various a-values ,  by 100 to obtain the values of f12, f13, /34, and by 
1000 for the values of fls) we can then see that while /32, fi3, fi4, and ~5 stay essent ial ly constant, #0 and 
fll tend to zero, agreeing with the fact that as the thermal  conductivity coefficient increases  the value of 
the temperature  at a given instant and at  a given location must be less that i ts value for constant thermal  
conductivity. Thus the function (16) does not give the right result.  Therefore we introduce the new basis 
function 

0 = ~ e - ~  C~ cos ~it~ + Z Dit cos ~ .  (24) 
n /t  

Relation (24) sat isf ies  the boundary conditions (14) if 

~,~=~ (n+-~-~) ,  (I7a) 
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Fig. 1. a) Dependence  of flj on o-; b) dependence  of fi 
on u (q* = 20). 
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0,2 

o 
Fig.  2. Dependence  of the coef f i -  
c ient  R on o- f o r  s e v e r a l  va lues  of 
q*. 

D~, 2Rq* (-- 1) = , )~ , ( 2 5 )  

Cn_ 2( - -1 )  n ( i _ _  Rq* t (26) 

and the c o r r e s p o n d i n g  value for  R is given. This  t r i a l  funct ion 
m u s t  s a t i s fy  al l  the a fo remen t ioned  condi t ions  and, in addit ion,  
the va lues  of flh (to d is t inguish  them f r o m  the p rev ious  va lues  flj) 
mus t  be such  that  f o r  o- > 0 the t e m p e r a t u r e  fo r  the s t a t i ona ry  
condi t ion m u s t  be r eached  m o r e  quickly  than for  o- = 0. We m u s t  
f i r s t  d e t e r m i n e  the value of R. F o r  the s t a t i o n a r y  condi t ion we 
choose  

0 = Rq* (1--.~2) (27) 
2 

as  the bas i s  funct ion and, using the s a m e  min imiza t i on  method,  
we obtain 

R = - -  5 + V' 25 + 20aq* (28) 
2~q* 

and g raphs  of R (Fig. 2) fo r  s e v e r a l  va lues  of q* and u. R e m e m b e r i n g  that  R = 1 fo r  u = 0, we obtain, 
s t a r t i ng  f r o m  Eq. (27), Fig.  3a, f r o m  which we see  that fo r  a t h e r m a l  conduct iv i ty  coef f ic ien t  which d e -  
pends f a i r l y  s t r o n g l y  on the t e m p e r a t u r e ,  we cannot ,  as  is well  known, neg lec t  t e m p e r a t u r e  changes  in the 
s t a t i o n a r y  case ,  a fac t  which is a l so  o b s e r v a b l e  when this s a m e  d i f fe ren t ia l  equat ion is solved us ing the 
R u n g e - K u t t a  method (dashed curve) .  

A c o m p a r i s o n  of the two f o r m s  of so lu t ion  shows that  the va r i a t iona l  method gives  plausible  r e s u l t s  
qu ick ly  and without  d i f f icul t ies  w h e r e a s  the R u n g e - K u t t a  method r e q u i r e s  the use  of a digi ta l  ca l cu la to r .  

We tu rn  now to the ca lcu la t ion  of the fih. Solving Eqs,  (20) and (21), us ing fih ins tead of /3 j ,  and sub -  
s t i tu t ing 0 f r o m  Eq. (24) ins tead  of f r o m  Eq. (16), we obtain 

] 4 . . [ ,  ( ,_ . . /  4..]} - + - . .  __=0 
+ ~.N~ (~ + ~,)" + ~ (~ + ~)~ - ~ / !  + ='N'~------~ [~--  (r + ~7)~ W--  (r-- n)~] 

F o r  u = 0 

~h=X 2 -- n2H 2 

4 
(30) 
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Fig.  3. Dependence  of the t e m p e r a t u r e  0 on the d imens ion -  
l e s s  coo rd ina t e  ~: a) s t a t i o n a r y  p rob lem;  b, c, d) nons ta t ion-  
a r y  p rob l em fo r  (r = 0.02, 0.1, and 1, r e spec t ive ty .  

w h e r e  
H = 2 h  .-}-1, h=O, 1,'2 . . . . .  n. (31) 

In the f o r m  p re sen t ed  the va r i a t i ona l  method is r a t h e r  involved and, in o r d e r  to solve  the se t  of Eqs.  (29), 
comple t e ly  n u m e r i c a l  me thods  and much mach ine  t ime  is r equ i red .  

We can, however ,  cons ide r  a t r i a l  funct ion with but  a s ingle /3 :  

0 = ' ~  e -13x~ C~ cos L ~ - ~  ~ D n cos ~,,~, (32) 
n n 

where  ~n, Cn, and D n a r e  obtained f r o m  Eqs.  (17a), (25), and (26). 

We m in imize  the funct ional  (15) with r e s p e c t  to /3: 

".~ : S S [  I' +~176 " oT o-~ o ( ~ )  + ~o~ . , . . .  o~] , . , : : o . o _ <  (,,> 
0 - - I  

and, with Eq. (21) in mind,  we obtain 

Z (1-- Rq~ ~ 1 16q* 3Rq* Rq*lt --~-h ) ~ - 7 [  - -1  - -  +[~ (1-- 
h 

+ 64o" ' ~  ( I - - - -~-~*){H '  ' .I-- Rq' '~ I ( I - -  Rq* l  4Rq* 
n ~ s 

'V,n,h 

q- ~ ( N2 q- H2) ~ l~ ---~] -q n~H2N~ iN z - -  (F - -  H) 2] iN ~ - -  (F -~ H) ~] = 0. 
(34) 
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Dependence of the tempera ture  0 on the 
rat io p for ~ = 0. 

Solving this equation, we obtain fi as a function of 
~; the resul ts  are  shown in Fig. lb  for q* = 20; anal-  
ogous graphs may be drawn for a r b i t r a r y  q*. 

Finally, for cr = 0, fl = 1 and we obtain the 
tempera ture  distribution obtainable by the usual com-  
putationat methods. 

In Fig. 3b-d we show the tempera ture  dis t r ibu-  
tion 0 for severa l  cr for  var ious  values of 1-. 

Finally, in Fig. 4 we show, on a semilog plot, 
the tempera ture  profile 0 as a function of r where 

k - -  k o 
-- ko ' (3s) 

on the mean plane of the plate (~ = 0) for  severa l  t ime 
instants T. 

A study of this graph is of interest .  At small  
t imes 0" = 0.1) the tempera ture  stays a lmost  constant 

as the thermal  conductivity coefficient changes, even when this change exceeds 100%. For  times twice as 
large,  noticeable tempera ture  changes a r e  observed when the thermal  conductivity coefficient changes by 
roughly 100%. 

A definite t empera tu re  stabili ty is also observed at fa i r ly  large times 0" = 1) where,  in o rder  to ob- 
tain noticeable changes of the tempera ture ,  it is neces sa ry  that r change by roughly10% (we r e m a r k  that in 
pract ice,  when cr = 0.1 and ~- = 1, the s ta t ionary state has a l ready  been attained). 

Starting f rom the considerat ions detailed above, we see that up to definite values of the pa ramete r s  
we can regard  the thermal  conductivity as constant or  at  least use a suitable average  value for it. In all 
remaining cases  it is neces sa ry  to regard  the problem in all its complexity in order  to obtain plausible r e -  
sults. 
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N O T A T I O N  

is the initial thermal  diffusivity; 
are  the constants f rom (18), (19), (26), and (25), respect ively;  
is the specific heat capacity;  
is the functional symbol;  
is the initial thermal  conductivity; 
is the thermal  conductivity; 
is the semithickness  of flat plate or semiheight of cylindrical  element; 
is the general  point in volume V; 
is the function of internal  heat re lease  per unit t ime and per unit volume; 
is the dimensionless  function of internal  heat re lease  determined by Eq. (11); 
a re  the real  and axial coordinates;  
is the unknown coefficient of sample function; 
is the total surface  at volume V; 
is the tempera ture  of plate; 
is the initial t empera ture  of flat plate; 
a re  the t ime and total volume; 
are  the orthogonal Car tes ian  coordinates;  , 
is the unknown coefficient of sample function (16); 
a re  the unknown coefficients of sample function (24) and (32); 
is the dimensionless  t empera tu re  determined by Eq. (10); 
a re  the eigenvalues (17), (17a); 
is the dimensionless  orthogonal Car tes ian coordinate;  
a re  the density and angular coefficient (12); 
is the dimensionless  t ime, determined by Eq. (10) (Fourier  number); 
is the angular cyl indrical  coordinate;  
is the thermal  conductivity change to initial thermal  conductivity ratio.  
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