HEAT CONDUCTION WITH A TEMPERATURE-DEPENDENT
THERMAL CONDUCTIVITY COEFFICIENT

Enrico Lorencini UDC 536.201
A variational method is employed to solve stationary and nonstationary heat conduction
problems when the thermal conductivity coefficient is temperature-dependent and the

heat generation function of the medium is arbitrary.

The Variational Formulation

1. In situations where temperature drops are large and an accurate temperature distribution is to
be determined, the temperature-dependence of the thermophysical parameters must be taken into account.
This is the case, for example, in nuclear reactors when calculations are made of the maximum possible
power [1]. Unfortunately, if the coefficient of thermal conductivity cannot be considered constant, the
mathematical problem becomes very involved and leads to nonlinear equations,

Fairly recently, thanks to the increasing knowledge of thermal properties and the importance of
nonlinear problems in the study of diffusion processes [2, 3], problems of this kind, even in the domain
of nuclear technology, are being solved with the application of numerical and analytical methods. Through
the use of a method dueto Kirchhoffand van Dusen, which involves basically the introduction of a new vari-
ables, Pfann [4] solved several one-dimensional problems of heat conduction and one two~dimensional
stationary problem.

Biot [5, 6] and Lardner [7] developed several approximate methods for heat conduction problems,
based on variational principles. Later on, Hays worked out a variational method, which he first applied to
several problems of hydrodynamies [8], and later also to heat conduction problems involving a tempera-
ture-dependent thermal conductivity coefficient [9].

Heat conduction in a plate without internal heat generation was studied by Dowty and Howarth [10)
using a finite-difference method.

In the first part of the present paper, wherein we study three-dimensional problems, we use the
variational theory of Schechter [11], taking into account temperature dependence of the thermophysical
properties and studying both stationary and nonstationary conditions. We analyze the plate problem in de-
tail analytically, and then numerically, followed by a short discussion.

2. If we consider the medium to be homogeneous and isotropic (which is close to actuality, for ex-
ample, in uranium or uranium oxide reactors), the heat conduction differential equation takes the form

div [kgrad T (p, )] + q(p, #) = pc or (ap; f) , )

where
k=Fk(T). 2

For the variational method functional analysis is very important, and, in this regard, the theory
developed by Mikhlin [12] and Hilbert [13] is of interest.
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We assume that the temperature in a solid of volume V is representable as a sum of two terms: a
temperature distribution T* and a variational distribution 6T:

T=T*(p, &)+ 8T (p, t). 3

The thermal conductivity coefficient k, the density p, and the volumetric specific heat capacity c
may be temperature-dependent. However, for many materials of engineering interest the temperature de-
pendence of p and c is negligible. At the same time, the thermal conductivity coefficient k, on the other
hand, often has an essential dependence on the temperature

k(T)=k(T* -+ 6T)=k* -+ k. (4)
If on the boundaries of the solid the temperature distribution is known, the thermal flux is equal to zero,
and terms in 6k may be neglected, then the functional I can be written in the form
oT*
at

1=” [—’;— (VT X yT) —gT + peT

] dtdv. (5)
£V -

It is readily seen that Eq. (1) is the Euler —Lagrange equation,

After choosing a base function we can construct the desired solution; however it will contain n un-
determined coefficients ;. The selection of such a base function is very involved. Starting with the Ray-
leigh —Ritz method, we have

al

—=0, i=0,1,2, 3, ..., n (6)
3,

From n of these equations we determine the n coefficients g;.

Two-Dimensional Plate

Placing the origin of the x-axis at the center of the plate (the other two dimensions are assumed to be
of a higher order), we write the differential Eq. (1) in the form

(e ) e @

with the boundary and initial conditions

T=0 (>0, x=+1I,
- (8

T=T, t =0, —L<x< 4L,

The operator (5) may be simplified:
k* [ 0T \2 oT*
/= (— —qT + pcT didx. 9
IV () —om o o
tx

We introduce the following dimensionless quantities:

=x/L, 1=ayt/L% 6=T/T,; (10)
g*=qL¥k,T}; an
k=ky (1 4- o8). (12)

We assume that the thermal conductivity coefficient is a linear function of the temperature and that
the remaining parameters are constant. Equations (7)-(9) then transform into the following equations:

o [k W\ . .
o (o o) o= 13)

0=0 >0, [=+1;
(14)

=1 =0, —l<l<+1;
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In order to make clear that the choice of base function is one of the most involved problems of the varia-
tional method, we consider two functions, which, although analogous in form, lead to absolutely different
results. At first we consider the following basis function:

8= 2 e PmT A cosh, L -+ 2 B,,cos L. (16)
m m.

We see that Eq. (16) satisfies the boundary and initial conditions (14) if

1
Lm‘——ﬂ; (m +—E) , (17)
_2e (e
A= (_1 o ) (18)
B, — =" (19)
A

We minimize the functional (15) using the basis function (16). We have

3 *
% j S [(1 w5 (5]t e | 4o =
and, correspondingly, we establish the supplementary condition
0=0%* (21)
Carrying out the integration with
N=2n+1, T=2y+1, J=2j+1, (22)
wheren, v, j=0,1,2,..., m, we obtain a series of nonlinear algebraic expressions in the unknowns

Bj

J:ﬂj [ “E 0= "*)] 16 VE (L(- Z»T)(l'%) '(ﬁ,-+ﬁ:+ﬁv)2

4q* 4q* 1 q* 4q* (N2 4 2 —T7) —o. 23
+ 72 (B, + By N? ] + 2[? [ (B, - B,)? (1 22 ) + N2 .“ [N2_ T+ J)z] [Nz__ Ir— J)z] (23)

We use the Newton—Raphson method for solving this system, Putting g* =20, we obtain Bj only up to o
=0.073. For large o the magnitude of the error is of the same order as that of 8. If we consider Fig. 1a,
on which 6 values of 8 jare represented (it should be remembered that the ordinary scale must be multi-
plied by 10 to obtain the gy-values for various o-values, by 100 to obtain the values of 8,, 83, 584, and by
1000 for the values of 3;) we can then see that while 8,, 83, B4, and B stay essentially constant, 8, and
B4 tend to zero, agreeing with the fact that as the thermal conductivity coefficient increases the value of
the temperature at a given instant and at a given location must be less that its value for constant thermal
conductivity. Thus the function (16) does not give the right result. Therefore we introduce the new basis
function

0= 2 g Pn" C,cos A G+ 2 D, cos AL (24)
Relation (24) satisfies the boundary conditions (14) if
A,=m (n + —;—) s (172)
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Fig. 1. a) Dependence of §jon o; b) dependence of 8
on o (g* = 20).
R 2Rg*(— 1)*.
D, = R (25)
An
2(—1y Rqg*
2ol . ¢, 2 (1_ s ) (26)
n /0
and the corresponding value for R is given. This trial function
261 must satisfy all the aforementioned conditions and, in addition,
' \ the values of B}, (to distinguish them from the previous values £;)
g0 must be such that for ¢ > 0 the temperature for the stationary
\ condition must be reached more quickly than for ¢ =0. We must
g4 20 first determine the value of R. For the stationary condition we
\ choose
50\ \ R .
0.2 10 0=—_(1—13 (27)
b 2
g ! z ¢ as the basis function and, using the same minimization method,
Fig. 2. Dependence of the coeffi- we obtain

cient R on ¢ for several values of
a*. R_— 5 4 1/ 25 - 200g*

20q*

(28)

and graphs of R (Fig. 2) for several values of ¢* and ¢. Remembering that R =1 for ¢ =0, we obtain,
starting from Eq. 27), Fig. 32, from which we see that for a thermal conductivity coefficient which de-
pends fairly strongly on the temperature, we cannot, as is well known, neglect temperature changes in the
stationary case, a fact which is also observable when this same differential equation is solved using the
Runge —Kutta method (dashed curve). ’

A comparison of the two forms of solution shows that the variational method gives plausible results
quickly and without difficulties whereas the Runge —Kutta method requires the use of a digital calculator.

We turn now to the calculation of the 8p. Solving Eqs. (20) and (21), using B instead of Bj, and sub-~
stituting ¢ from Eq. (24) instead of from Eq. (16), we obtain

1 R* 1 ., ‘ Rg* Rg* 1
-] e S-S
R » W ) Byt B

4Rg* ] 4Rq*[ 1 (1— Rg* \ . _4Rg* ] N2 |- H2 —T? _ (29
- —
CoatNE@, 4B | w2 [ (B, + BA)S Az ) n2N*B; } (V2 — (T + Hp][N?*— (T — H)Y] )
For o =90

By=i — (30)
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Fig. 3. Dependence of the temperature 6 on the dimension-
less coordinate ¢: a) stationary problem; b, ¢, d) nonstation-
ary problem for ¢ = 0.02, 0.1, and 1, respectively.

where
H=2n1+1, h=0, 1,2, ..., n. 31)

In the form presented the variational method is rather involved and, in order to solve the set of Egs. (29),
completely numerical methods and much machine time is required.
We can, however, consider a trial function with but a single 5:

2
0= 2 ¢ Pt ¢ cos AL+ 2 D, cos AL, (32)
n

n
where Ay, Cp, and Dy, are obtained from Egs. (173), (25), and (26).
We minimize the functional (15) with respect to 3:

o 1
dl 00 d {08 a0 00* o]
Rl 1 ®) o, [ 2, —g* =0 33
% 5_5[( o0 5 (o) T e o ) e @

and, with Eq. (21) in mind, we obtain
Rg*\ 1 [ l6g* 3Rg* Rg*
1— —_— =1 1—
Y (=) 8 (=)
h

640 Rg* [ Rg* 1 / Rg* \ | 4Rq* ]
1— m1— _
+ o E ( 7»%; ){ ( 7»% ) [(H2+F2—{—]\’2)2 (1 7»% ) + TeNE (2 - H2)?

v,n.h
+ 2 | () e || T =o0. 4
w2l | (N® - H2p? Al a2HN? || [N? — (0 — HY|[N* — (I + HY]
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8 ) Solving this equation, we obtain g as a function of

R S o; the results are shown in Fig. 1b for g™ = 20; anal-
\\ ogous graphs may be drawn for arbitrary q*.
i 4 N Finally, for ¢ =0, B =1 and we obtain the
\ temperature distribution obtainable by the usual com-
NG putational methods.
5
5 02 N In Fig. 3b-d we show the temperature distribu~
\\ tion 6 for several o for various values of 7.
3.5 \\\ Finally, in Fig.4 we show, on a semilog plot,
y : \ the temperature profile ¢ as a function of i, where
\
k—Ek,
/5 i P = (35)
! k
05 0,1 ¢ e ! 2 4 ¢ , 0
Fig. 4. Dependence of the temperature 9 on the on the mean plane of the plate (¢ = 0) for several time
ratio ¢ for £ = 0. instants 7.

A study of this graph is of interest. At small
times (7 = 0.1) the temperature stays almost constant
as the thermal conductivity coefficient changes, even when this change exceeds 100%. For times twice as
large, noticeable temperature changes are observed when the thermal conductivity coefficient changes by
roughly 100%.

A definite temperature stability is also observed at fairly large times (7 = 1) where, in order to ob-
tain noticeable changes of the temperature, it is necessary that ¢ change by roughly 10% (we remark that in
practice, when o = 0.1 and 7 =1, the stationary state has already been attained).

Starting from the considerations detailed above, we see that up to definite values of the parameters
we can regard the thermal conductivity as constant or at least use a suitable average value for it. Inall
remaining cases it is necessary to regard the problem in all its complexity in order to obtain plausible re-
sults.

NOTATION

ag is the initial thermal diffusivity;
Am, Bm, Cm, Dn  are the constants from (18), (19), 26), and (25), respectively;

C is the specific heat capacity;

I is the functional symbol;

kg is the initial thermal conductivity;

k is the thermal conductivity;

L is the semithickness of flat plate or semiheight of cylindrical element;
P is the general point in volume V;

q is the function of internal heat release per unit time and per unit volume;
q* is the dimensionless function of internal heat release determined by Eq. (11);
T,z are the real and axial coordinates;

R is the unknown coefficient of sample function;

S is the total surface at volume V;

T is the temperature of plate;

Ty is the'initial temperature of flat plate;

t, Vv are the time and total volume;

X, ¥V, 2 are the orthogonal Cartesian coordinates;

Bm is the unknown coefficient of sample function (16);

Bns B are the unknown coefficients of sample function (24) and (32);

) is the dimensionless temperature determined by Eq. (10);

Am, An are the eigenvalues (17), (172a);

& is the dimensionless orthogonal Cartesian coordinate;

p, O are the density and angular coefficient (12);

T is the dimensionless time, determined by Eq. (10) (Fourier number);
Q@ is the angular cylindrical coordinate;

Y is the thermal conductivity change to initial thermal conductivity ratio.
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